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Abstract

Taxonomic confusion exists in several sibling species groups. The Polyommatus coridon species complex (Chalk Hill
Blues) serves as a model group of sibling species in which genetic analyses provide suitable means for taxonomic
clarification. We studied the allozyme patterns of the two described bivoltine species of this complex, Polyommatus
hispana and Polyommatus slovacus, and compared them to the two genetic lineages of the univoltine P. coridon. P.
hispana is well distinguished from P. coridon (genetic distance: 0.081), and most probably is a sibling species that has
evolved during glacial isolation on the Iberian Peninsula. P. slovacus is genetically indistinguishable from the eastern,
Pontic-Mediterranean lineage of P. coridon; therefore we suggest that it represents a local bivoltine population only.
Since the spring generation of P. slovacus was much less common than the summer generation and showed less genetic
diversity, it is probable that uni-/bivoltinism is a dimorphism affecting only part of the whole population. We suggest
that the higher genetic diversity of the second generation may be a consequence of gene flow from adjacent single-
brooded populations.
© 2005 Gesellschaft fiir Biologische Systematik. Published by Elsevier Gmbh. All rights reserved.
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(Mayr 1963; Dobzhansky 1970; Paterson 1985; Temple-
ton 1989; Harrison 1998; Howard and Berlocher 1998;
Bock 2004). Many different analytical methods are
being applied to the diagnosis of specific differentiation
of morphologically rather similar taxa. Among them,

Introduction

The essentialist, static morphospecies concept has
been transformed since the times of Linnaeus into the
biological species concept based on interspecific repro-

ductive isolation, intraspecific recognition and genetic
cohesion. Consequently, the term ‘“‘species” as a
concept, category and taxon has become differentiated
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interspecific morphological differences in genital struc-
tures have been reconsidered and re-evaluated as
indicators of reproductive isolation (e.g. Lafontaine
and Mikkola 1987; Shapiro and Porter 1989; Mikkola
1992). In addition, chemical and acoustic signals, life
cycle traits, and host species specialisations often have
been used as tools for species discrimination (e.g. Ragge
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and Reynolds 1984; Ragge 1987; Ingrisch 1995; Quartau
et al. 2000; Fischer and Fiedler 2002).

The rapid development of molecular techniques,
especially the advances in molecular genetics, provide
very useful tools in this field (cf. Loxdale and Lushai
1998). These techniques are widely used to analyse
general phylogenetic relationships or phylogeographic
structures within species (cf. Hillis and Moritz 1995;
Avise 1998; Comes and Kadereit 1998; Howard and
Berlocher 1998; Taberlet et al. 1998; Hewitt 1999, 2000,
2001, 2004). However, for invertebrates much fewer
examples are known in which these techniques have
been used to distinguish between cryptic and/or sibling
species pairs. Such examples include the neotropical
Heliconius charithonia group (Jiggins and Davies 1998),
the Aricia group (Aagaard et al. 2002), the Cicada orni
group (Quartau et al. 2000), and aquatic gastropods
(Wilke and Pfenninger 2002; Pfenninger et al. 2003).
Recent studies support the view that the level of
phylogenetic differentiation between or within closely
related species based on DNA sequence data can be
compared with genetic distances obtained from allo-
zyme studies (e.g. the often discussed Maculinea alcon-
rebeli complex; see Als et al. 2004; Bereczki et al. 2005).

The rather diverse genus Polyommatus Kluk, 1801
(s.1.), subdivided into several subgenera, is a suitable
group for such taxonomic case studies, because many
taxa of still unresolved taxonomic status exist in this
group (e.g. subgenus Agrodiaetus, consisting of over 50
species, many of which are strictly endemic). Moreover,
aggregates of sibling species also are characteristic for
this genus. The Polyommatus coridon complex (Chalk
Hill Blues) of the subgenus Lysandra represents a very
suitable model group of sibling species to test the
usefulness of allozyme analysis amidst such taxonomic
complexity. This assemblage is composed of several,
mostly allopatric species in Europe. P. coridon (Poda,
1761) is widely distributed in southern and central
Europe and is rather abundant on semi-natural calcar-
eous grasslands; its single generation is on the wing in
July and August (Tolman and Lewington 1998). Several
authors accept P. coridon caelestissima (Verity, 1921) as
a separate species that is restricted to a narrow area in
central Spain (e.g. Manley and Allcard 1970; Fernandez-
Rubio 1991). However, this is not well supported by
recent genetic analyses (Lelievre 1992; Marchi et al.
1996). The contrary situation is seen in P. coridon
gennargenti (Leigheb, 1987) from Sardinia, which might
be a separate species due to its strong genetic
differentiation from continental P. coridon (Marchi et
al. 1996). This is also supported by recent studies of
preimaginal morphology and the life history of this
taxon (Jutzeler et al. 2003). Another univoltine species
occurring in central and eastern Spain, Polyommatus
albicans (Herrich-Schiffer, 1851), is generally accepted
in the literature (cf. Tolman and Lewington 1998), albeit

with rather weak support from genetic data (Leliévre
1992).

Two taxa in the P. coridon group differ considerably
from all others by being bivoltine. Polyommatus hispana
(Herrich-Schéffer, 1852) is distributed along the Med-
iterranean coast from south-eastern Spain to north-
western [taly. Its typical habitat is similar to that of P.
coridon. The spring generation of these butterflies is on
the wing from April to June, the second generation from
August to October (Tolman and Lewington 1998).
Recently, another bivoltine species, Polyommatus slova-
cus Vit’az et al., 1997, was described with a very limited
distribution in the dolomitic hills of south-western
Slovakia. Its spring generation is on the wing from the
second half of May to the middle of June, the second
generation at the same time as the univoltine P. coridon,
from the second half of July to the middle of August.
Both generations are supposed to be complete; the
adults of the second generation emerge in the laboratory
about 20 days after pupation (Vit’az et al. 1997). So far,
there is no evidence of hybridisation in the wild between
synchronous second-brood P. slovacus and univoltine P.
coridon. However, the spot-like occurrence of the
bivoltine P. slovacus is surrounded by monovoltine
populations of P. coridon. The habitat of both types of
populations, calcareous rupicolous grassland, also does
not show noteworthy differentiation. Therefore, fre-
quent hybridisation in the field appears possible.

Both of the bivoltine species show very few morpho-
logical differences from the univoltine P. coridon.
Therefore, it is important to test their specific status
using genetic markers. In the present study, the
questions are (i) whether P. hispana is a sibling species
of P. coridon or only represents bivoltine populations of
the latter, (i) whether P. slovacus is different from P.
coridon on the specific level as well, and (iii) whether P.
slovacus represents remote populations of P. hispana in
eastern Europe. In addition, an evaluation of the
biogeography and evolutionary history of P. hispana
and P. slovacus is performed.

Materials and methods

We sampled the spring generation of P. hispana from
two populations: 25 males and three females at Sanilhac
(Gard, southern France) on 14.V.1998, and 50 males at
La Braisse (Alpes Maritimes, south-eastern France) on
16.V.1998. For P. slovacus, we sampled both genera-
tions at the type locality, Luka nad Vahom in south-
western Slovakia: 39 males on 23.V.1997, and 50 males
on 10.VIII.1997. We stored the individuals in liquid
nitrogen until further analysis. The geographic positions
of these sampling sites, and those of additional samples
of P. coridon, are shown in Fig. 1.
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Fig. 1. Geographic distribution of sample sites; e = Polyommatus coridon, eastern lineage; h = P. hispana; s = P. slovacus; w = P.
coridon, western lineage. Exact locations can be obtained from the corresponding author by request.

Half of the abdomen of each individual was homo-
genised by ultrasound in Pgm-buffer (Harris and
Hopkinson 1978) and centrifuged at 17,0009 for 5min.
Electrophoresis was run on cellulose acetate plates
(Hebert and Beaton 1993). A total of 17 enzymes
representing 20 loci were analysed. Details on loci
analysed and electrophoresis conditions are given in
Schmitt and Seitz (2001a).

Allele frequencies, F-statistics (Weir and Cockerham
1984) and Nei’s (1978) standard genetic distances were
calculated by means of the G-Stat package (Siegismund
1993). AMOVA and hierarchical F-statistics were
performed using Arlequin 2.000 (Schneider et al.
2000). Hardy—Weinberg equilibrium (Louis and Demp-
ster 1987) and genetic disequilibrium (Weir 1991) were
analysed, and exact tests for differentiation (Raymond
and Rousset 1995a) were performed with the GENE-
POP package (Raymond and Rousset 1995b). Phyloge-
netic trees using the UPGMA algorithm were
constructed with PHYLIP version 3.5.c (Felsenstein
1993). Bootstraps based on 1000 iterations were
calculated with the same software.

A comparison with the two major genetic lineages of
P. coridon was performed, including previously pub-
lished data on P. coridon. We used all 36 populations
from a major phylogeographic analysis of this species

(Schmitt and Seitz 2001b). We added supplementary
populations from regions close to the samples of P.
hispana in southern France (Schmitt et al. 2002), and P.
slovacus in east-central Europe (Schmitt and Seitz
2002a). Thus, a total of 46 P. coridon populations were
included (see Fig. 1). A population of P. bellargus
(Rottemburg, 1775) from western Germany was in-
cluded as outgroup.

Results

All loci showed banding patterns consistent with
autosomal inheritance and with known quaternary
structures (Richardson et al. 1986). We know from P.
coridon samples that the 6-Pgdh locus in this species is
located on the Z chromosome (Schmitt and Seitz
2001b). Although in butterflies the female sex is the
hemizygous one and we mostly studied male individuals
(only three females were included), this has no
consequences for our study. No significant deviations
from the Hardy—Weinberg equilibrium were detected for
the populations studied (P>0.99). Linkage disequili-
brium between loci was not detected after Bonferroni
correction. Hardy—Weinberg proportions and indepen-



300 T. Schmitt et al. / Organisms, Diversity & Evolution 5 (2005) 297-307

Table 1. Four parameters of genetic diversity of the two generations of P. slovacus from its type locality Lika nad Vahom, and two
populations of P. hispana from southern France; for comparison, means and standard deviations for two lineages of P. coridon (data
reanalysed from Schmitt and Seitz 2001a, 2002a; Schmitt et al. 2002)

4 He (%) Pys (%) Pror (%0)
P. slovacus Spring 2.50 17.0 55 85
P. slovacus Summer 2.90 18.5 60 85
P. hispana Sanilhac 2.65 27.5 65 75
P. hispana La Braisse 2.50 26.6 60 65
P. coridon Western® 2.794+0.30 20.5+1.6 52+6 7749
P. coridon Eastern® 2.61+0.34 19.7+1.5 56+6 7449

A = mean number of alleles per locus, H, = expected heterozygosity, Pos = percentage of polymorphic loci with the most common allele not

exceeding 95%, Py = total percentage of polymorphic loci.
“Mean of 28 populations of an Adriatic-Mediterranean lineage.
®Mean of 18 populations of a Pontic-Mediterranean lineage.

dence of loci therefore allowed the use of standard
methods for further analyses.

Several population-genetic parameters were analysed
for the samples: the mean number of alleles per locus
(A), expected heterozygosity (H.), percentage of poly-
morphic loci with the most common allele not exceeding
95% (Pys), and the total percentage of polymorphic loci
(Pioy). All data are given in detail in Table 1 and are
compared with data obtained for two major genetic
lineages of P. coridon (reanalysed data from Schmitt and
Seitz 2001a, 2002a; Schmitt et al. 2002). The allelic
constitution differed significantly between the two
populations of P. hispana (exact test: x> = 56.8,
P =0.004). No significant difference was detected
between the two generations of P. slovacus (exact test:
x> =36.8, P =0.332).

The genetic distance (Nei 1978) between the two
populations of P. hispana was 0.0248. Total genetic
variance of P. hispana was 2.400 (P<0.0001); 1.6%
(P = 0.0068) of this total genetic variance was between
these two populations. Total variance of P. slovacus was
1.600 (P<0.0001); the variance between the two
generations was not significant (0.008, Fst = 0.5%,
P =0.15). The genetic distance (Nei 1978) between P.
hispana and P. slovacus was 0.0845 (£+0.0068 SD). A
hierarchical variance analysis revealed 95.6% of the
total variance between populations between these two
taxa (Fgt = 19.6%, P<0.0001), and 4.4% within taxa
(Fsg = 1.1%, P<0.0001).

Phenograms were constructed based on the genetic
distances (Fig. 2), in which we included 46 populations
of P. coridon from Slovakia, the Czech Republic,
Hungary, Germany, France and Italy, and one P.
bellargus sample from Idar-Oberstein (western Ger-
many). In these phenograms, the two generations of P.
slovacus clustered together and formed a monophyletic
group with the populations of the Pontic-Mediterra-
nean lineage of P. coridon. P. hispana populations
represented an independent clade (Fig. 2).

Differentiation between the two P. slovacus samples
and the 46 P. coridon samples was significant
(Fgt = 3.95%, P<0.0001). If only the 18 P. coridon
populations of the eastern lineage were included, this
differentiation  decreased strongly (Fgt = 1.44%,
P =0.011), and lost significance if only populations
from Slovakia and the south-eastern Czech Republic
were used (Fgr = 0.96%, P =0.11).

On the other hand, the two samples of P. hispana were
well distinguished from the 48 populations of the P.
coridon/slovacus cluster, and 75.6% of the total variance
between populations was between these two groups
(Fgt = 15.99%, P<0.0001). Including successively less
P. coridon populations, which were closer to the
sampling sites of P. hispana, did not notably change
this ratio. The whole data set is shown in Table 2. The
mean genetic distance (Nei 1978) between P. hispana
and P. coridon was 0.0815 (+0.0114 SD). This was twice
as much as between the two lineages of P. coridon
(0.040740.0102 SD).

We also searched for a spring generation of P. coridon
at three flight sites within a radius of less than 100 km
around Luka nad Vahom (HradiSte and Podhradie,
both in western Slovakia, on 30.V.1998; and Klentnice,
in south-eastern Moravia, on 01.VI.1997). No spring
generation has been observed at these three localities.
On 10./11.VIIL.1997, P. coridon was very common at
Hradiste (more than a thousand individuals in one
place), but relatively scarce in Klentnice and Podhradie
(less than a hundred individuals seen over several
hours). At Luka nad Vahom, the spring generation
was present during both spring visits (23.V.1997 and
30.V.1998), but was relatively scarce (less than a
hundred individuals during more than an hours’ stay),
while the summer generation was extremely common
(far more than a thousand individuals in one place) on
10.VIII.1997.

P. hispana was rather scarce at its more western
sampling site (Sanilhac: less than 50 butterflies observed
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Fig. 2. UPGMA phenogram of genetic distances (Nei 1978) between two populations of Polyommatus hispana, two generations of
P. slovacus, and 46 populations from two genetic lineages of P. coridon, with P. bellargus included as outgroup; values above
branches indicate bootstrap percentages from 1000 iterations. Abbreviations (States in Germany, see Fig. 1): BB = Brandenburg,
BW = Baden-Wiirttemberg, BY = Bavaria, RP = Rhineland-Palatinate, SL = Saarland, TH = Thuringia.

during a day of sampling), but extremely common at its
more eastern sampling locality (La Braisse: far more
than a thousand butterflies in one place).

Discussion

The respective total genetic diversities of P. hispana
and P. slovacus were as high as those typically observed

in P. coridon, and nearly all values obtained were within
the known range of variation of the latter species (see
Table 1). Thus, total genetic diversity was considerably
higher than in the majority of allozyme studies on
butterflies and moths; only a few species with higher
genetic diversity are known (cf. Graur 1985; Packer et
al. 1998; Schmitt et al. 2002; Wood and Pullin 2002).
The percentage of heterozygosity of P. hispana was
higher even than in P. coridon; we are not aware of any
work on butterflies reporting higher mean values. Only
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Table 2. Hierarchical variance analyses and F-statistics between P. hispana, P. slovacus and P. coridon; vapwg = variance among

populations within groups, vag = variance among groups

vapwg Fsg vag For
Two populations of P. hispana <
48 populations of P. coridon from two major genetic lineages 0.120%** 0.0615%** 0.370%** 0.1599%**
28 populations of P. coridon, western lineage 0.040%*** 0.0213%*** 0.396%*** 0.1739%%**
11 populations of P. coridon, France 0.029%** 0.0146%** 0.3597%** 0.15171%%*
7 populations of P. coridon, southern France 0.036%** 0.0171%** 0.353%%* 0.1441%**
P. hispana (La Braisse) <>
4 populations of P. coridon, southern France east of Rhone 0.012%* 0.0057* 0.347%** 0.1422%%**
P. hispana (Sanilhac) <
2 populations of P. coridon, southern Massif Central o o 0.46]%%* 0.1816%**
Two generations of P. slovacus <
48 populations of P. coridon from two major genetic lineages 0.114%** 0.0596%** 0.079%* 0.0395%*
18 populations of P. coridon, eastern lineage 0.051%** 0.0276%** 0.027* 0.0144*
5 populations of P. coridon, Slovakia and Moravia 0.043%%* 0.0237%%%* 0.018™ 0.0096™
2 populations of P. coridon, south-western Slovakia 0.031%** 0.0185%** o o

P>0.05; *P<0.05; **P<0.005; ***P<0.0001.

two species of noctuid moths (Heliothis virescens and H.
zea) are on record with higher heterozygosities exceed-
ing 30% (Sluss et al. 1978).

Polyommatus hispana — an Atlantic—Mediterranean
sibling of P. coridon

The genetic distance between P. hispana and P.
coridon is remarkable and suggests a long period of
evolutionary separation of both taxa. The fact that P.
hispana 1is similarly differentiated from nearby and
distant P. coridon populations makes environmental
selection unlikely as a trigger for this differentiation.
Furthermore, even major introgression of P. hispana
into P. coridon, or vice versa, can be largely excluded. In
butterflies and moths, such strong genetic differentiation
is known only from complexes with at least subspecific
or specific structuring (e.g. Stock and Castrovillo 1981;
Porter and Geiger 1988; Porter et al. 1995; Pratt 1994;
Britten et al. 1995; Marchi et al. 1996; Jiggins and
Davies 1998; Wiemers 1998; Schmitt and Seitz 2001c).
Only half of this distance was observed between two
genetic lineages of P. coridon described as different
subspecies or subspecies complexes (Schmitt and Seitz
2001a), which most probably evolved during Wiirm-
glacial isolation in the Adriatic- and the Pontic—-Medi-
terranean refugium, respectively (Schmitt and Seitz
2001b). It is therefore most likely that P. hispana is an
Iberian sibling species in its own right, and that it
differentiated to species level allopatrically during
glacial isolation on the Iberian Peninsula, due to
random genetic drift. Such a differentiation of a
common ancestor into three major genetic lineages
within the three large southern European peninsulas is a
frequently observed phylogeographical pattern (cf.

Comes and Kadereit 1998; Taberlet et al. 1998; Hewitt
1999). A refugium of P. hispana on the south-eastern
Mediterranean coast of Spain seems most probable,
given the species’ current distribution pattern (Tolman
and Lewington 1998). This evolutionary core areca was
also suggested by Varga (1977).

It could be argued that the stronger differentiation of
P. hispana in relation to the two P. coridon lineages is
because (i) the molecular clock (i.e. the speed of
evolution) runs faster in P. hispana than in P. coridon,
probably due to the two generations per year; and/or
that (ii) differentiation between P. hispana and P.
coridon started earlier than within P. coridon itself, with
the first split possibly taking place during the Riss
glaciation, thereby allowing more time for their evolu-
tion; and/or that (iii) the isolation of the Atlantic—-Me-
diterranean refugium was more stringent than between
the Adriatic- and the Pontic-Mediterranean ones (and
thus better conserved evolutionary steps in Iberia).

The more eastern population of P. hispana showed
minor genetic diversity for all analysed parameters
compared to the more western one. This might be the
result of an iterative sampling effect (i.e. random genetic
erosion) during the eastward postglacial expansion
along the Mediterranean coast of France, most prob-
ably due to repeated founder events (cf. Hoelzel et al.
2002). Similar phenomena of loss of diversity during the
postglacial expansion process were also observed in the
Adriatic— and the Pontic-Mediterranean lineage of P.
coridon, respectively (Schmitt and Seitz 2001b). This
effect is well known from many animals and plants (cf.
Hewitt 1996; Comes and Kadereit 1998) and was
postulated already by Reinig (1938).

This hypothesis is corroborated by the fact that P.
hispana in the more eastern population was very
abundant, wheras the more western population had a
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rather low density. For P. coridon, it has been shown on
a regional scale that big populations generally possess
higher genetic diversity than small ones (Schmitt and
Seitz 2002b), a phenomenon that has been observed
frequently in plants and animals (e.g. Billington 1991;
Buza et al. 2000; Hudson et al. 2000; Jaggi et al. 2000;
Madsen et al. 2000). However, we obtained the opposite
result, even with fewer individuals analysed from the
more western than from the more eastern population.

Polyommatus ““slovacus” — a local bivoltine race of
the Pontic—Mediterranean lineage of P. coridon

The status of P. “slovacus” is rather different from
that of P. hispana. In our analysis, both generations
were not significantly different from the univoltine P.
coridon populations from Slovakia and Moravia, which
formed one monophyletic group with other populations
from Hungary, the Czech Republic and north-castern
Germany (Schmitt and Seitz 2001a). Thus, no separate
refugium for P. “slovacus” can be suggested. The
refugium of the eastern P. coridon lineage has been
located further south, probably near the Adriatic coasts
of the Balkans (Schmitt and Seitz 2001b), so that the
region of Luka nad Vahom could be colonised only by
postglacial range expansion. Thus, the evolution of
bivoltinism in south-western Slovakia appears to be a
postglacial phenomenon, because P. “‘slovacus” is
known only from this region (Vit’az et al. 1997).

If so, the differentiation should have taken place in
sympatry or local micro-allopatry with P. coridon,
maybe due to only one or a small number of mutations
within one or a rather limited number of individuals.
This hypothesis is supported by the fact that the habitat
of the bivoltine P. “slovacus” is island-like, dolomitic,
hilly rupicolous grassland with rather shallow, sceletic
soils. This means that such sites were greatly resistant to
postglacial reforestation even during humid climatic
periods, so that they possibly represent natural habitats
of P. coridon that have persisted since the climate
rewarmed.

However, such mutation(s) could have led to specia-
tion due to incompatibility with P. coridon, and in this
case we would expect a strong genetic bottleneck, as
shown, for example, during the evolution of P. coridon
gennargenti in Sardinia (Marchi et al. 1996). This island
taxon showed a dramatically reduced level of genetic
diversity for all analysed parameters in comparison to
continental populations. In contrast, the summer gen-
eration of P. “‘slovacus” showed a genetic diversity
slightly higher than other P. coridon populations in
surrounding Slovakia, Moravia and Hungary.

The spring generation in both years was much more
scarce than the summer generation. Therefore we
suppose that the phenomenon of bivoltinism of P.

coridon is the result of local genetic polymorphism, with
a more or less constant proportion of the whole
population being bivoltine. However, even the spring
generation showed a genetic diversity not differing
remarkably from smaller P. coridon populations of this
region or from more northern localities (Schmitt and
Seitz 2002a; see Table 1). In addition, the higher
diversity of the summer generation can be explained
by gene flow from surrounding synchronous, mono-
voltine P. coridon populations.

This high level of genetic diversity and the low level of
genetic differentiation from the adjacent univoltine P.
coridon populations make the hypothesis likely that the
individuals flying in the second half of July and August
simply represent a mixture of the phenotypically
inseparable second-brood P. “‘slovacus” and synchro-
nous single-generation P. coridon, with massive gene
flow between them. This might also explain the reduced
genetic diversity of the spring generation in comparison
to the summer generation.

Consequently, we argue that P. “slovacus” is not a
separate species. This is also supported by a comparison
of the morphology of the type material illustrated in
Vit’az et al. (1997) with the P. “slovacus’ and P. coridon
material collected by us. In contrast, the two genetic
lineages of P. coridon (conforming to Schmitt and Seitz
2001a) differ morphologically: they are well distin-
guished by the width of the dark subterminal fringe
stripe (T. Schmitt, unpubl. data). Regarding this feature,
P. “slovacus” clustered clearly within the Pontic-Medi-
terranean lineage. Also, the whitish fringe circles of the
forewing were missing, as is normal in the eastern
lineage.

However, the Luka nad Vahom individuals were
smaller than other P. coridon, possibly due to a reduced
larval life span. Such a phenomenon has been studied in
detail in the life history of Lycaena hippothoe. The
south-western Hungarian lowland populations of this
species are known to produce two generations per year,
and were described as separate subspecies (Szabo 1956;
Fazekas and Balazs 1979), whereas L. hippothoe has
only one generation over most of its range (Tolman and
Lewington 1998). This life history difference was well
supported by rearings in common environments
(Fischer and Fiedler 2002). Interestingly, the bivoltine
lineage showed a reduced larval life span, an enhanced
larval growth rate and a reduced adult weight, most
probably as an evolutionary adaptation to bivoltinism
(Fischer and Fiedler 2002), and thus might reflect the
same phenomenon as in P. “slovacus’.

Bivoltinism of normally univoltine Lepidoptera was
also observed for several other species. Some burnet
moths show highly interesting life histories: Zygaena
trifolii always has a single generation in central Europe
(even in common environment rearings), whereas
populations from south-western Europe have two or
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more generations, in the wild as well as in common
environment rearings (Wipking 1988). Zygaena fausta in
south-eastern Spain and Z. transalpina (hippocrepidis) in
south-western France occur in two generations per year
in geographically restricted regions (Fernandez-Rubio
1990; Naumann et al. 1999). Also, the widely distributed
Zygaena filipendulae produces two generations per year
in many parts of south-central Europe, ¢.g. parts of
northern Italy and the lowlands of Hungary (Z. Varga,
pers. observ.). Apparently, genetic polymorphisms also
evolved in these species and survived in some limited
areas, possibly even close to the respective place at
which that evolution had occurred, as most probably is
the case in P. “slovacus’.

Since plurivoltinism has been considered a plesio-
morphic feature in Polyommatus species (Schurian
1989), this local bivoltinism of P. coridon was conserved
or re-evolved in this local strain. As all the other known
P. coridon populations of the eastern lineage are
univoltine, even in regions with generally higher
temperatures and longer vegetation periods than in
Slovakia, the bivoltinism of P. ““slovacus” cannot be
interpreted as an adaptation to particularly warm and
favourable climatic conditions. Whether this life history
trait is advantageous and will spread, or whether it is
less advantageous and finally will disappear, is an open
question.

Conservation implications

P. hispana, the western and the eastern P. coridon
lineage represent three well-distinguished units. As
evolutionarily significant units (ESUs), they merit
independent conservation efforts. Among these three
taxa P. hispana is the unit with the smallest distribution
area (Kudrna 2002), and therefore special conservation
responsibility for this taxon has to be attributed to Spain
and France. Both ESUs of P. coridon are so widespread
that the conservation responsibility for either of these
two taxa is shared by many European countries.
Nevertheless, as P. coridon is one of the best character
species of semi-natural calcareous grasslands (van
Swaay 2002), conservation measures for P. coridon
directly help keep their habitats protected by the habitat
directive of the European Union.

The assessment of the conservation value of the
bivoltine P. “slovacus” is more difficult. From the
population-genetic point of view, there is nothing
extraordinary in these individuals that would justify
special conservation efforts. However, the character of
bivoltinism opens some novel evolutionary possibilities.
This might justify even the classification as a separate
ESU; at least, this bivoltine strain of P. coridon has to be
considered as a special management unit (MU) with

high priority for conservation. Also, the habitat of this
population ranks among the habitat types requiring
special conservation measures as well (Habitat Direc-
tive, Annex I: 6190 Rupicolous pannonic grasslands,
Stipo-Festucetalia pallentis), and represent one of the
northernmost, isolated sites of dolomitic rupicolous
grasslands of the Pannonian type.

Conclusions

Although P. hispana and P. slovacus initially appeared
as quite similar entities, our analysis revealed rather
different evolutionary histories. In the case of P.
hispana, allopatric speciation most probably took place
during a long-lasting process of isolation. On the other
hand, P. slovacus was described as a species, which
might have evolved in sympatry with P. coridon during a
rather short time period. However, our allozyme
analysis could not support this latter hypothesis, and
the bivoltine population from Luka nad Vahom may be
seen as a local race of P. coridon with a peculiar atavism
of bivoltinism. Thus, our study demonstrates the high
discriminatory value of allozyme analyses for the
resolution of evolution in sibling-species questions.
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